Second-Order Partial Differentiation

• **Clairaut's Theorem** or **Schwarz's Theorem**: Suppose f(x, y) is defined throughout an open disk *D* centered at (a,b). If f_{xy} and f_{yx} are both continuous on *D*,

then $f_{xy}(a,b) = f_{yx}(a,b)$.

- Extend to *n* variables and multi-order partial differentiation.
- Hessian Matrix

$$\circ \mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

- Matrix of all second-order partial derivatives of a scalar multivariable function $f(x_1, x_2, ..., x_n)$
- \circ $\,$ In most cases, ${\bf H}$ is diagonally symmetrical due to Clairaut's Theorem

• **H** is just the Jacobian of a Jacobian
$$\mathbf{J} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$
 (*m* = 1 case)

- **Hessian**: det(**H**)
- Order of variables does not matter as long as you are consistent!

• Second Derivatives Test

- Conditions:
 - All second partial derivatives of $f(x_1, x_2, ..., x_n)$ are continuous on an *n*-disk centered at $(a_1, a_2, ..., a_n)$ such that $\nabla f(a_1, a_2, ..., a_n) = \vec{0}$.
 - Suppose k is $\{k \in \mathbb{Z}^+ | k \le n\}$
 - Let $D_k = \det(\mathbf{H})$ in the variables $x_1, x_2, ..., x_k$
- If $D_k(a_1, a_2, \dots, a_n) > 0$ for all k, then $f(x_1, x_2, \dots, x_n)$ has a local minimum at (a_1, a_2, \dots, a_n) .
- Else if $(-1)^k D_k(a_1, a_2, ..., a_n) > 0$ for all k, then $f(x_1, x_2, ..., x_n)$ has a local maximum at $(a_1, a_2, ..., a_n)$.
- Else if $D_k(a_1, a_2, \dots, a_n) \neq 0$, then $f(x_1, x_2, \dots, x_n)$ has a saddle point at (a_1, a_2, \dots, a_n) .
- Else that $D_k(a_1, a_2, \dots, a_n) = 0$, then the second derivatives test is inconclusive.
- Second-Degree Taylor Polynomial
 - The second-degree Taylor polynomial of $f(\vec{x}) = f(x_1, x_2, ..., x_n)$ centered about

$$\vec{a} = (a_1, a_2, \dots, a_n)$$
 is $P_2(\vec{x}) = f(\vec{a}) + \nabla f(\vec{a}) \cdot (\vec{x} - \vec{a}) + \frac{1}{2} (\vec{x} - \vec{a})^T H f(\vec{a}) (\vec{x} - \vec{a})$

where $Hf(\vec{a})$ is the Hessian at $f(\vec{a})$. $(\vec{x} - \vec{a})$ denotes the matrix column picture of the vector $\vec{x} - \vec{a}$. Note that these involve matrix operations!